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Variance estimation of the intraspecific-encounter index (v) 

For simplification in notation, we define  

,    (S1)  

where . Note that, using the notation in Eq. S1, we can show  for all 

, and the intraspecific-encounter index, v, is concisely expressed as: 

.     (S2) 

As a result, the variance of v is  

.   (S3) 

For deriving an accurate estimator of Var(v) from Eq. S3, in which we need to derive the 

 and , for all , in detail. First, we have 

,     (S4) 

in which the last term can straightforward be estimated by , when applying the moment 

method. Given , we specifically derive the covariance of  and  from  
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,  (S5) 

where we define 𝑠" = 𝜋 + (1 − 𝜋)𝑝" for convenience in notation.  

For the case , we can show that the covariance of  and  is  

.   

As a result, we have the general result for the covariance of  and  with the form of  

.    (S6) 

Note that, in Eq. S6, the parameter can be simply estimated by , and the term within curly 

braces stands for  as shown in Eq. S5 and is estimated by    
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where  as defined in the main text; additionally,  the 

indicator variable, , is used to account for theoretically for , 

which is proven by using the Cauchy-Schwarz inequality of the form as 

.  (S8) 

Applying the results in Eqs. S4 and S7 to the Eq. S3 leads to the variance estimator of the 

conspecific-encounter index which is 

. (S9) 

Note that, to further elucidate the approximate derivation in Eq. S9, we reshape the double 

summation in the curly brackets of Eq. S9 as 

 2 , , 𝑣|/01|02
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= 𝟏′𝚿𝟏, (S10) 

where 𝟏′ is the transpose of a column vector or a 1 × (𝑚 − 1) matrix composed of all entries 

equal to one (i.e., 𝟏′ = (1,1, … ,1)), and 𝚿 is a (𝑚 − 1) × (𝑚 − 1) symmetric matrix having all 
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⎣
⎢
⎢
⎢
⎡ 0 1 𝑣

1 0 1 ⋯ 𝑣30B 𝑣30C 𝑣30D
𝑣30E 𝑣30B 𝑣30C

⋮ ⋱ ⋮
𝑣30C 𝑣30B 𝑣30E
𝑣30D 𝑣30C 𝑣30B

⋯ 1 0 1
𝑣 1 0 ⎦

⎥
⎥
⎥
⎤
.  

t = 1
m− 2

I(Zk+1 = Zk = Zk−1 = i)
i=1

S

∑
k=2

m−1

∑

I(t > v2 ) Cov(θk,θ j ) ≥ 0 j ≠ k

pisi
i=1

S

∑
⎧
⎨
⎩

⎫
⎬
⎭

2

≤ pi( )
2

i=1

S

∑
⎛

⎝
⎜

⎞

⎠
⎟ pi si{ }

2

i=1

S

∑
⎛

⎝
⎜

⎞

⎠
⎟

= pisi
22

i=1

S

∑
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As a result, the right-hand side of Eq. S10 is equal to summing up all entries of the matrix 𝚿 or to 

summing up the entries of the upper triangular part of 𝚿 and doubling the resulting sum, because 

𝚿 is symmetric. With the latter case, we can compute  

 

𝟏′𝚿𝟏
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(S11) 

where the approximation in the rightmost term of Eq. S11 is from ignoring 𝑣302 − 1 in the 

numerator of its previous equality when the sample size 𝑚 is not very small. Actually, the absolute 

value of this term is not small, which tends to −1 when 𝑚 gets large. But comparing to the first 

term (𝑚 − 1)(1 − 𝑣), it is small, which is usually one or two orders smaller. Accordingly, the 

approximate formula of Eq. S9 is the desired result given in Eq. 4 of the main text. 

 

Modeling of alternative spatial distribution patterns of species using different spatial point models 

We utilize R package spatstat (Baddeley & Turner, 2005; Baddeley, Rubak, & Turner, 2015) to 

construct different spatial point processes to model alternative spatial distributional patterns of 
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species. In detail, we use homogeneous Poisson process as the reference model to generate totally 

random distribution of species (Baddeley & Turner, 2005; Baddeley et al., 2015). Homogeneous 

Poisson process contains a single parameter, which describes density per unit area of a single 

species.  

To model aggregate distribution, in addition to the modified Thomas cluster process 

mentioned in the main text, two cluster processes were implemented: Matern cluster process and 

Cauchy cluster process (Thomas, 1949; Matern, 1986; Waagepetersen, 2007; Ghorbani, 2013). 

The Matern cluster process assumes uniform distribution of offsprings around a disc of each 

cluster. Therefore, the radius of the disc is used to quantify the strength of aggregation. When the 

radius is small, the aggregation effect is expected to be high. For the Cauchy cluster process, 

offspring individuals are randomly placed around each cluster point following a Cauchy kernel 

characterized by a scale parameter. Higher scale parameter implies that the random replacement of 

individuals around parental points will become wide (less aggregate). Detailed parameter settings 

were presented in Table S1. 

To model regular distribution, we utilize Strauss and Strauss hard processes (Strauss, 1975). In 

these processes, the key parameter controlling distribution regularity is the interaction parameter, 

which is a number between 0 and 1. When the interaction parameter is lower, the inhibition of 

neighboring points is higher, and thus stronger regularity of distribution is expected. Detailed 

parameter settings in these numerical simulations were presented in Table S1.  
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Robustness evaluation of the conspecific-encounter index and its variance estimator 

Because the conspecific-encounter index was developed on the basis of a first-order Markov 

transition model, it would be informative to test its performance and robustness when the sampled 

biodiversity data do not rigorously follow the first-order Markov transition model. To do so, we 

conducted a numerical simulation by letting 𝜋 vary when simulating data from the Markov model 

using Eqs. 2 and 3 in the main text. 

Because the value of 𝜋 has a range between 0 and 1, we consider letting 𝜋 become a random 

variate and follow a beta distribution which should be one of the most popular probability 

distributions with range between 0 and 1. According to the magnitude of 𝐸(𝜋)  (i.e., the 

expectation of 𝜋), we consider five beta distributions (denoted by beta (𝑎, 𝑏) with two positive 

parameters 𝑎 and 𝑏): 𝑎 = 1, 𝑏 = 9 with 𝐸(𝜋) = 0.1; 𝑎 = 1, 𝑏 = 3 with 𝐸(𝜋) = 0.25; 𝑎 = 2, 𝑏 =

3 with 𝐸(𝜋) = 0.4; 𝑎 = 11, 𝑏 = 9 with 𝐸(𝜋) = 0.55; 𝑎 = 7, 𝑏 = 3 with 𝐸(𝜋) = 0.7.  

Assume that the distribution of species relative abundances is composed of 𝑝" = 𝑐𝑞", 𝑖 =

1,2, … , 𝑆 , where 𝑆  represents the number of species, 𝑞" s are positive numbers, and 𝑐 =

Y∑ 𝑞"[
"42 \02 as a normalizing factor such that ∑ 𝑝"[

"42 = 1. Four distributions of species relative 

abundances are considered and briefly summarized below.  

Population 1. (𝑞2, 𝑞6,… , 𝑞[) is a random sample from an exponential distribution with 

mean 1. Note that it is equivalent to that the resulting (𝑝2, 𝑝6,… , 𝑝[) follows a Dirichlet 
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distribution with parameter 1. 

Population 2. (𝑞2, 𝑞6,… , 𝑞[) is a random sample from a uniform distribution over (0, 

1). 

Population 3. ( 𝑞2, 𝑞6,… , 𝑞[)  is species abundance data from the Pasoh plot 

(Manokaran et al., 1992; Adhul Rahim et al., 2004), in which 814 species are identified 

from 335240 trees.  

Population 4. (𝑞2, 𝑞6,… , 𝑞[) is tree species abundance data collected from the interior 

and edge areas of Brazilian forests (Magnago et al., 2014), in which 443 species are 

found from 4140 trees.   

 Note that species richness is fixed at 𝑆 = 200 for the first two hypothetical communities.  

Given each combination of 𝜋’s beta distribution and the sample size 𝑚, we simulate 1000 

replicates using the Markov model (Eqs. 1 and 2 in the main text), in which 𝜋 follows the given 

beta distribution and consistently varies in the consecutive simulation of subsequent individuals. 

As a result, the averaged 𝑣, the sample standard error (SE) and the estimated SE based on these 

1000 replicates are calculated to evaluate the robustness of the proposed index 𝑣 along with its 

variance estimator (Eq. 4 of the main text). Note that, in Tables S2-S5, “Sample SE” represents the 

sample SE of 1000 𝑣’s, while “Estimated SE” is to average 1000 estimated SEs using Eq. 4. If the 

estimated and sample SEs are comparable, it means that the proposed method (Eq. 4) is applicable 

to estimating the SE of the new index (𝑣).  
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The results showed that, the proposed estimator in Eq. 4 is valid for estimating the variance of 

𝑣 and robust when the assumption of the first Markov model used is violated, because most results 

in Tables S2-S5 do not show sizable differences between the “Sample SE” and the “Estimated SE”. 

The key factor contributing to the high robustness of the proposed conspecific-encounter index 

and its variance estimator is that the corresponding calculation formulae (Eqs. 3-4) are simply 

composed of indicator functions (or binary random variates).  

 

Impacts of combined line transects on the estimation of the conspecific-encounter index 

Following the procedure that we manipulated the amphibian datasets sampled from different 

field locations in China and Vietnam (Fig. S1), we tested whether the combination of sampled 

biodiversity data derived from multiple line transects can have impacts on the estimation of the 

conspecific-encounter index.  

To be specific, we simulated hypothetical ecological communities with 100 species using the 

modified Thomas process. The distributional aggregation level of each species is solely 

determined by the dispersion parameter (≤50 or ≥500). We then conducted the line transect 

sampling with a fixed width (0.5 m). 1000 replicates were conducted in the numerical simulation. 

For each replicate, the number of line transects was set to 3, 5, 10 and 20, respectively.  After line-

transect sampling, we then compared the calculated value of the conspecific-encounter index 

using the combined dataset derived from the multiple line transects (e.g., 5) versus the average of 

2s
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the values, each of which was computed from the data collected from a single line transect only. 

The simulation results showed that, when the number of line-transect varied (Figs. S4-S5), the 

combination of multiple line transects had similar results as the average value over the resulting 𝑣 

values, each of which was calculated from a single line transect. Regardless of how the 

distributional aggregation level of the simulated communities varied (highly aggregate or less 

aggregate), the calculated values for the proposed index using the combined or single line-transect 

datasets were consistently laid around the one-to-one ratio red line (Figs. S4-S5).  

All these results supported the validity and appropriateness of using combined line-transect 

datasets when assessing the multi-species distributional aggregation level of amphibian 

assemblages in China and Vietnam in the main text. 
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Additional figures and tables 

Fig. S1. Sampling line-transect locations in southwest China and central-south Vietnam. Different 

colors represent different line transects sampled from different counties of China or different 

national parks of Vietnam. 
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Fig. S2. On the relationship between conspecific-encounter index and scale parameter in the 

simulated data using Cauchy and Matern cluster processes, respectively. Scale parameter in both 

cluster processes implies the relative concentration of random placement of offsprings around 

parental clusters (higher scale parameter implies low concentration, thus being less aggregate).  
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Fig. S3. On the relationship between conspecific-encounter index and inhibition strength gamma 

parameter in the simulated data using Strauss and Strauss hard processes, respectively. Low 

gamma value implies that conspecifics are strongly inhibited to occur around each individual point, 

resulting in strong regular distribution.  
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Fig. S4. A comparison on the conspecific-encounter index calculated using the combined dataset 

collected from multiple line transects versus the separate datasets collected from single line 

transects. 𝑣_`3a"bcd  denotes the value calculated using the combined dataset, while 𝑣e"bfgc 

denotes the average value calculated from single line-transect datasets. 1000 replicates of line-

transect sampling are conducted here and the hypothetical ecological community is simulated to 

be highly aggregate. 
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Fig. S5. A comparison on the conspecific-encounter index calculated using the combined dataset 

collected from multiple line transects versus the separate datasets collected from single line 

transects. 𝑣_`3a"bcd  denotes the value calculated using the combined dataset, while 𝑣e"bfgc 

denotes the average value calculated from single line-transect datasets. 1000 replicates of line-

transect sampling are conducted here and the hypothetical ecological community is simulated to 

be less aggregate. 
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Table S1. Parameter settings in numerical simulations for different spatial point models.  

Spatial point models Parameter setting 

Cauchy cluster process Intensity of the Poisson process of cluster centres kappa=3; 

Mean number of points per cluster mu=5; Scale parameter for 

cluster kernel is allowed to vary from 0.01 to 0.1; Simulation 

window in R: [0,5]×[0,5]; line transect sampling width=0.05 

Matern cluster process Intensity of the Poisson process of cluster centres kappa=3; 

Mean number of points per cluster mu=5; Scale parameter for 

describing the radius of offsprings around the clusters is allowed 

to vary from 0.01 to 0.1; Simulation window in R: [0,5]×[0,5]; 

line transect sampling width=0.05 

Strauss inhibition process Interaction radius=0.1; Interaction parameter gamma is allowed 

to vary from 0.01 to 1; Simulation window in R: [0,5]×[0,5]; 

line transect sampling width=0.05 

Strauss hard inhibition process Interaction radius=0.1; Hard core distance=0.05; Interaction 

parameter gamma is allowed to vary from 0.01 to 1; 

Simulation window in R: [0,5]×[0,5]; line transect sampling 

width=0.05 
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Table S2. A sensitivity analysis of the proposed index 𝑣 along with its variance estimator (Eq. 4 of 

the main text). In the numerical simulation, 1000 replicates are conducted and generated from the 

relative species abundance distribution set as Population 1 while the used probability model 

violates the first order Markov model. 

Sample 
Size 

 𝜋 follows a beta distribution with parameters (𝑎, 𝑏) 
 (1,9) (1,3) (2,3) (11,9) (7,3) 

𝑚 = 50       
 Average 𝑣 0.111 0.256 0.405 0.551 0.705 
 Sample SE 0.044 0.064 0.068 0.071 0.064 
 Estimated SE 0.046 0.065 0.074 0.077 0.073 

𝑚 = 75       
 Average 𝑣 0.109 0.256 0.406 0.553 0.703 
 Sample SE 0.038 0.050 0.058 0.056 0.054 
 Estimated SE 0.037 0.053 0.060 0.062 0.059 

𝑚 = 100       
 Average 𝑣 0.108 0.259 0.408 0.555 0.705 
 Sample SE 0.032 0.044 0.050 0.053 0.048 
 Estimated SE 0.032 0.046 0.052 0.053 0.051 

𝑚 = 125       
 Average 𝑣 0.107 0.258 0.407 0.556 0.705 
 Sample SE 0.028 0.039 0.044 0.044 0.041 
 Estimated SE 0.028 0.041 0.046 0.048 0.045 
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Table S3. A sensitivity analysis of the proposed index 𝑣 along with its variance estimator (Eq. 4 of 

the main text). In the numerical simulation, 1000 replicates are conducted and generated from the 

relative species abundance distribution set as Population 2 while the used probability model 

violates the first order Markov model. 

Sample 
Size 

 𝜋 follows a beta distribution with parameters (𝑎, 𝑏) 
 (1,9) (1,3) (2,3) (11,9) (7,3) 

𝑚 = 50       
 Average 𝑣 0.106 0.260 0.405 0.553 0.703 
 Sample SE 0.045 0.064 0.071 0.071 0.064 
 Estimated SE 0.044 0.066 0.074 0.077 0.073 

𝑚 = 75       
 Average 𝑣 0.106 0.253 0.403 0.558 0.706 
 Sample SE 0.036 0.050 0.058 0.058 0.052 
 Estimated SE 0.037 0.053 0.060 0.062 0.059 

𝑚 = 100       
 Average 𝑣 0.107 0.257 0.404 0.554 0.704 
 Sample SE 0.032 0.046 0.051 0.049 0.044 
 Estimated SE 0.032 0.046 0.052 0.053 0.050 

𝑚 = 125       
 Average 𝑣 0.106 0.254 0.403 0.553 0.702 
 Sample SE 0.028 0.039 0.045 0.043 0.040 
 Estimated SE 0.028 0.040 0.046 0.047 0.045 
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Table S4. A sensitivity analysis of the proposed index 𝑣 along with its variance estimator (Eq. 4 of 

the main text). In the numerical simulation, 1000 replicates are conducted and generated from the 

relative species abundance distribution set as Population 3 while the used probability model 

violates the first order Markov model. 

Sample 
Size 

 𝜋 follows a beta distribution with parameters (𝑎, 𝑏) 
 (1,9) (1,3) (2,3) (11,9) (7,3) 

𝑚 = 50       
 Average 𝑣 0.108 0.257 0.401 0.552 0.704 
 Sample SE 0.044 0.062 0.070 0.072 0.063 
 Estimated SE 0.045 0.065 0.075 0.077 0.074 

𝑚 = 75       
 Average 𝑣 0.103 0.253 0.406 0.554 0.703 
 Sample SE 0.034 0.051 0.056 0.059 0.051 
 Estimated SE 0.036 0.052 0.060 0.062 0.059 

𝑚 = 100       
 Average 𝑣 0.106 0.255 0.403 0.550 0.701 
 Sample SE 0.030 0.044 0.050 0.051 0.045 
 Estimated SE 0.032 0.045 0.052 0.053 0.051 

𝑚 = 125       
 Average 𝑣 0.106 0.254 0.403 0.554 0.702 
 Sample SE 0.028 0.039 0.044 0.044 0.042 
 Estimated SE 0.028 0.040 0.046 0.047 0.045 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

Table S5. A sensitivity analysis of the proposed index 𝑣 along with its variance estimator (Eq. 4 of 

the main text). In the numerical simulation, 1000 replicates are conducted and generated from the 

relative species abundance distribution set as Population 4 while the used probability model 

violates the first order Markov model. 

Sample 
Size 

 𝜋 follows a beta distribution with parameters (𝑎, 𝑏) 
 (1,9) (1,3) (2,3) (11,9) (7,3) 

𝑚 = 50       
 Average 𝑣 0.108 0.257 0.408 0.555 0.701 
 Sample SE 0.044 0.064 0.071 0.071 0.065 
 Estimated SE 0.045 0.065 0.074 0.077 0.074 

𝑚 = 75       
 Average 𝑣 0.109 0.260 0.406 0.552 0.701 
 Sample SE 0.035 0.051 0.056 0.055 0.054 
 Estimated SE 0.037 0.053 0.061 0.062 0.059 

𝑚 = 100       
 Average 𝑣 0.110 0.257 0.404 0.554 0.700 
 Sample SE 0.031 0.043 0.048 0.051 0.046 
 Estimated SE 0.032 0.045 0.052 0.053 0.050 

𝑚 = 125       
 Average 𝑣 0.108 0.257 0.405 0.556 0.702 
 Sample SE 0.028 0.039 0.045 0.044 0.041 
 Estimated SE 0.028 0.040 0.046 0.047 0.045 

 

 

 

 


